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Abstract  

A continuation of a previous paper, in which a model of a quantized space-time theory 
has been investigated, considers further problems of a quantized De Sitter space. There 
will be shown that a De Sitter space is a very useful starting point to a non-local relativistic 
quantum field theory, containing the Pauli principle, for the theory of elementary 
particles, as a connection to Feynman's relativistic quark theory, where the group SU(3) 
has a particular importance, will be discussed. This method offers the possibility of 
treating weak local differences from a space with De Sitter metric as a perturbation. 
Therefore the problem of a fundamental elementary length lo must be considered in 
connection with the general theory of relativity. 

1. Introduction 

In  a previous  paper  (Ulmer ,  1973) a connec t ion  between t ime definit ion 
in the  theory  o f  relat ivi ty and the Paul i  pr inciple  has been stated.  The  
co r respond ing  ma themat i ca l  fo rmula t ion  o f  this connec t ion  has involved 
the cons idera t ion  o f  a fundamenta l  length lo and,  as a consequence,  a 
quant ized  De  Sit ter  space, where the  curvature  can only assume discrete 
values.  N o w  some proper t ies  o f  a field equat ion  for  a part icle ,  which 
represents  a source o f  a field and  which is in teract ing with its own field, 
seem to be necessary in this paper .  F o r  this purpose ,  we need some repeti-  
t ions o f  the pr inciples  and p rob lems  o f  relat ivist ic  quan tum theory.  By 
means  o f  the very wel l -known field equa t ion  

m 2 C 2 

DT~u - h2 71. (1.1) 
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where [] = V 2 -  1/c 2. (02/0t2), Pauli (1941) derived the result that Fermi 
particles (odd spin) have to be quantized in consistence with 

~u(x)  7*,+(x ') + 7*,+(x ') ~ , ( x )  = 6~a 6(x - x ')  (1.2) 

and Bose particles in consistence with 

4~(x) d~+(x ') - ~+(x') ~(x )  = 6(x - x ')  (1.3) 

In the latter case we understand particles with integral spin. Equation (1.2) 
is the result of the postulate that the energy of Fermi particles shall remain 
positive definite. Therefore Pauli considered the very general case of a 
situation which had been given first by Dirac's relativistic wave equation 

a~,~ me 

~v~, + 7,~v = 2a~, (1.4) 

Without taking account of the exclusion principle, the interpretation of 
(1.4) has profound difficulties concerning the stability of an electron. This 
particle would have to shed its positive energy in a very rapid time, by 
emitting electromagnetic waves. An equilibrium between radiation and 
self-energy of the particle would never be possible, and Dirac solved this 
problem with the help of the hole theory, where the assumption of the 
Pauli principle is absolutely necessary. Because of the profound connection 
between energy, matter and field in the theory of relativity, the positive 
definite energy of a Fermi particle, which has to obey the Pauli principle, 
is equivalent to the fundamental problem of the stability of matter. There- 
fore the stability of matter has to be assumed in equations (1.1)-(1.4), 
because the local quantum field theory, founded by these equations, 
describes a particle without any structure. (In reality, the problems of the 
infinities, connected with local quantum field theories, exist already in non- 
relativistic quantum mechanics and classical electrodynamics. But the 
constant number of particles is the cause of those difficulties of no concern 
here.) 

In the previous paper (Ulmer, 1973), we concluded that the relativistic 
definition of time and its application to the uncertainty relation directs to 
the statement: Any information about particles, which concerns the 
quantum mechanical behaviour of them at the same time, cannot be given, 
because a determination of the state vectors ~'1(tl), ~,s involves the 
application of the Lorentz transformation 

x;, = L,~ x~ + ag (1.5) 

(We use the definition o fL ,  ~, where this transformation (Schmutzer, 1968) 
depends on three speed components.) It is impossible to define the rest 
system 2;'(x;) in which the use of a rest mass m for a material particle can 
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only be justified, and the observation system 2~(x~), because the validity of 
the uncertainty relation does not permit the definition of a relationship 
between X(xv) and S'(x$). The scalar product of the four vectors in special 
relativity 

p ,  p~, = (p,) '  (p•)" 

o r  
E 2 = p 2  c 2 -[- mo 2 c 4 (1 .6)  

where (p") ' (p,) '  = mo 2 c 2 is connected with the rest system U(x~), is together 
with the postulate xp  - p x  = ih the usual starting point of the relativistic 
quantum theory. In classical special relativity equation (1.6) can always be 
defined, as we have no restrictions by the uncertainty relation. But this 
uncertainty postulate causes difficult problems in the context of the 
definition of the rest system and rest mass and application of (1.5) and 
(1.6). Therefore the relativistic quantum field theory is not proper for the 
calculation of the masses of elementary particles and for the stability of 
matter without the additional consistency postulate of positive definite 
energies or the Pauli principle. 

In a relativistic theory, there is no exceptional position of time coordinates 
and the above conclusion is compatible with the exclusion principle. In this 
context it should be emphasized that Feynman (1948) and StiJckelberg 
(1938) succeeded in interpreting Dirac's hole theory, where the Pauli 
principle has to be assumed, in terms of electrons, moving forwards in time, 
and positrons, moving backwards in time. This interpretation of the hole 
theory has already shown the relationship between the definition of time 
and the Pauli principle. 

2. De  Sitter Space in a Non-local Quantum FieM Theory 

After these qualitative comments, we continue our investigations, based 
on the previous paper (Ulmer, 1973). We should mention the very important 
fact that in classical special (or general) theory of relativity a 'many-body- 
system' involves in the same way a 'many-time-system', but the corre- 
sponding transformation laws always exist, thus we are able to state (or 
predict) the particular time difference in each system. A system of micro- 
particles does not permit, as a consequence of the uncertainty relation, the 
application of those transformation laws in an unlimited way. Therefore 
transformation (1.6) must contain statistical information, and there are 
some reasons that the original homogeneous Lorentz group cannot be 
maintained in subatomic structures, as it is also not possible to make use 
of the Lorentz group without modifications at very far distances (cos- 
mology). In both cases the classical Minkowski space, on which the local 
quantum field theory is based, must be abandoned (Weyl, 1923; Bopp, 
1967). 

Commutator rules of the kind 

~ ( t ) t ' -  t'~b(t) r 0 (2.1a) 
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or, in more general form, 
( o ( x O  x; - x; ~b(xv) r O (2.1 b) 

have been discussed recently by some authors (e.g., a report given by 
Kirzhnits (1971)). In the context of our considerations to the Pauli principle 
(previous paper (Ulmer, 1973)) commutator relations like (2.1a) seem to 
be justified and necessary, because this inequality (2.1 a) prohibits informa- 
tion about elementary events at the same time. But postulate (2.1a) would 
involve an exceptional position of time coordinates, and the principles of 
relativity would not be satisfied in an acceptable way. Therefore the com- 
mutation rules (2.1 b) form a more adequate starting point. The introduction 
of the commutator relations (2.1b) can be understood as a model of a non- 
local quantum field theory, but from an axiomatic point of view this 
inequality is not satisfactory, because we must investigate those algebraic 
foundations from which inequality (2.1b) can be specified in more detail. 
A more precise connection with the field equations (1.1)-(1.4) seems to be 
necessary. In the local quantum field theory x, x', and t represent only 
parameters of a field operator r  t ) ,  satisfying the algebraic relations: 
For 5 > 0 there exists [Ix - x't[ < 5 such that 

[qS(x), ~b+(x')]+ = 6(5) (2.2) 

where [Ix - x'[[ < e is space-like and 6(5) the a-distribution. From (2.1b) we 
can conclude a generalization of (2.2), because (2.1b) permits with the 
same justification the postulate of commutator (or anticommutator) rules 
of the form 

[~b(x0, q~+(x;)]+_ r O, llx~ - x;t[ r O (2.3) 

In the cases of (2.1) and (2.3) x~ and x~ represent operators themselves, 
which cannot commute with each other. Therefore commutator rules of 
the kind 

x~x; , -  x;,x. = lo2~. 
x "  x " '  - -  x " ' x "  = lo 2 ~ ' ~  (2.4) 

x ~ y~,x"" - 7 ,  x " '  x ~ = Io 2 7 ~ 

have been proposed (Ulmer, 1973), where the introduced matrix y,~ has to 
satisfy the principles of special (or general) relativity in the following way: 
,~ ' (x~)  means the system, where the particle rests, and 27(x,) represents 
those coordinates, measured by an apparatus 2~. Any other measurement 
apparatus shall observe ~(x,), and the transformation laws between the 
classical measurement apparatus E and S have to be given according to 
the principles of special (or general) relativity. A very important application 
of (2.4) seems to be the inhomogeneous Lorentz transformation (Poincar6 
group). This case leads to a quantized De Sitter space, whilst a restriction 
to the homogeneous proper Lorentz transformation has no meaning, and 
we have to discuss the following problem: 

~ =  U(~) ~, ~ = r  +, x = x  +, x ' = x  '+ (2.5) 



Q O A N T I Z E D  DE SITTER SPACE--II 203 

where U(~) is an unitary transformation. L (Schmutzer, 1968) is given by 

x~ = L ,  V x~ + a~ 

\Ls*  

vt = (vl, v2, vs), v 2 = v ~ v~ 

L,' / 
( 1  - v21c2) -x/2] 

(i = 1,..., 3) 

(2.6)t 

The introduction of (2.6) permits an investigation of De Sitter groups in a 
spinor field: 

__$ 2 = x 2  + y2  + z2  _ c 2 t2  _ an+ an (2.7) 

In connection with relation (2.4) the curvature can only assume discrete 
values (Ulmer, 1973). From the matrix Y~v four linear combinations y~ 
(4 x 4 matrices) have to be formed, which have been identified with Dirac 
spinors (1.4). By means of differential operators, applied to (2.7) and (2.4), 
the following field equations have been derived" 

�9 2 v a q ~ ,  

2 - -  +v 0 v 1 + 
- lo  q~. y Ox~+ = ~ , ( L  u ) -  xv + a~, +) (2.8) 

- s .  2 = to" [ ] r  
and 

~u Su 2 ~bu = -1o"/~n D~bu (2.9) 

The application of (2.4) to (2.7) involves the additional relation 

a~+ x~ + x~a~ = O (2.10) 

Some properties of these equations have already been studied. At this 
point we should mention the interesting fact that a De Sitter space plays a 
very important role in general relativity. A specification to the homogeneous 
Lorentz group is not very interesting in high energy physics. Perhaps we 
should note, too, that postulate (2.10) is connected with (2.7). In general 
relativity, where we are able to abandon relation (2.7) for instance, if we 
regard a more general case, we do not need this restriction, and postulate 
(2.4) itself is valid for every av. 

In this paper we intend only to consider spinor fields in connection with 
very important De Sitter space, but we should refer to some publications 
(Schmutzer, 1964; Schr6dinger, 1960; Hehl & Datta, 1971; Datta, 1971; 
Peres, 1962) which appeared some years ago, in which the Dirac equation 
and spinor fields in the general theory of relativity have been discussed in 
great detail. A generalization of the Dirac equation (1.4) was shown to be 
equivalent to a non-linear spinor equation of the Heisenberg-Pauli type, 
in which the non-linear term is induced by torsion. 

f L d  = -ivde.  (1 - v~/c2) -~1~. 
14 
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Equations (2.8) and (2.9) represent a more general form of equations 
(1.1) and (1.4). The inequality (2.3) is a generalization of (2.2), because we 
wish to derive a formalism, where (2.2) does not vanish, in addition, for 

4 0 .  In this case the commutator relations (2.2) cannot be reduced to 
the ~(e)-distribution, and instead of a ~-distribution a non-local quantum 
field theory must contain an expression K ~ ( x ,  x~), depending on x~ and x~: 

qSu(x,) qS~+(x;) + qSa+(x;) qSu(xv) = au~ Kux (2.11) 

It is very difficult to start with a postulate like (2.11) and to find a proper 
mathematical formalism. Therefore an irreducible representation of (2.11) 
had to be found with the help of the arguments referred to by the inequality 
(2.1 a, b). For  this purpose the fundamental commutator rules (2.4) have 
been introduced as an irreducible representation of equation (2.11). Because 
equation (2.11) has to satisfy relativistic field operators as an additional 
condition with respect to xv and x;, for example, the relativistic electro- 
dynamics, there are some reasons for a relationship between Ku,(x,,x;) and 
Green's function G(x,x ' )  of an unified field of elementary particles. It is 
very well-known from quantum field theory that G of every linear operator 
L, mappingf(x)  into g(x) with the help of 

Lf (x )  = g(x)  (2.12) 

involves for the inverse problem the definition 

f ( x )  = f G(x, x ' )g (x ' )  dx'  (2.13) 

where L and G have to satisfy 

LG(x,  x') = 6(x - x') (2.14) 

A specification of (2.11) for the local field theory is in the same way equiva- 
lent with a mapping of K, ,  into the a-distribution. 

We wish to illustrate the connection between (2.4) and (2.11) by means 
of a special example, which is easy to survey and which seems to be able to 
be generalized in a prope~ way by the use of Fourier or Laplace trans- 
formations. The operators A, B shall form a non-vanishing commutator 

A B  - BA  = c (2.15) 

where c has to be constant (c-number). Now we define 

f ( A )  = e 'A, f + ( B )  = e -'B (2.16) 

and we obtain the following expressions (Panli, 1962): 

e'(a-+m = f ( A )  f (+)(B) e +o's.c. ,. ~-,~ 

e ~(a+--m =f (+~(B) f (A )  e v~ c.,. (-,) (2.17) 

f ( A )  f + ( B )  • f + ( B ) f ( A )  = ~, e '(a-m • 22 e *(A-m 

2, = e + O  .5 .  i .  c .  ( - o ,  2 2  = e - ~  ~. c .  ( - o  
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This result we can bring to a convenient form: 

[f(A),f+(B)]+_ = e ~(a-B) (21 • )~ 

205 

(2.18) 

3. Some Applications and a Connection to Feynman' s 

Relativistic Quark Model  

According to the previous paper the solution of equation (2.9) is obtained 
by 

A. exp {-1? -~ C~ ~ x~ xv} exp { ik ~ x~} + A + exp { - lo  2 C,  ~ x~ xv} exp { - i k  ~ x~} 

(3.1) 

where k 4 = o~/c = hc~/hc = E/hc. Equations (2.8) and (2.9) and the corre- 
sponding solution (3.1) of (2.8) permit, by means of a comparison with 
local relativistic quantum theory, the interpretation of a structure and 
self-energy for a particle interacting with its own field. Only for far distances 
do we obtain the usual free particle equations of relativistic quantum 
theory. For this case, the solutions of (3.1) are given by plane waves, 
coming from infinity and going to infinity, and there are no difficulties 
arising from the normalization volume. Considering equation (2.9), we 
may write this equation in another form: 

s .  2 ~ .  = -to" [ ] ~ .  

j .  = (x  2 + y2 + z 2 _ c 2 t 2 _ a +  a . )  q~. (3.2) 

1o 4 D ~ .  = L  

With the help of (3.2) more detailed information about structure and self- 
interaction is possible. In analogy to electrodynamics this self-interaction 
of a particle with its own field can be represented by the current j , .  It is 
interesting to note that this current j ,  is connected with harmonic oscil- 
lators, and the restriction to the De Sitter space involves obviously 
relativisitc harmonic oscillators for the description of the field of ele- 
mentary particles. The particular conditions x 2 +  y 2 +  z - e Z t 2 =  0 (for 
a light beam) and a vanishing curvature (a, = 0) lead to the second-order 
equation 

[]q~. = 0 (3.2') 

The corresponding first-order equation 

~ = 0 (3.3) 

which represents a particle without rest mass and curvature, of which the 
velocity is that of light, does not satisfy P and C-invariance. In agreement 
with experiments equation (3.3), which is known as the Weyl equation, 
is used for the description of neutrinos. 

14" 
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A consideration of the first-order equation (2.8) shows that the neglect 
of the self-interaction term leads to the Dirac equation (1.4), which 
describes an electron, for example, without any structure, and we have to 
set at = a2 = a3 = a4 = - a .  Now (2.8) becomes 

v 0q~, a 

. 2 m e  
a = + lo - f f  (3.4) 

But this restriction does not agree with the solution of (2.9), which we take 
over from a previous paper (Ulmer, 1973), and the meaning of au in (3.4) 
has been changed. As the Minkowski space is not considered, there are 
many arguments, discussed by Kirzhnits (1971), that lo may not be identified 
with h / M .  c ( M  is a baryon mass). 

In the theory of relativity, the total energy E (or the total mass) appears 
only in the fourth component of a four-vector. This fact agrees with the 
solution of equation (2.9). We get a,  by: 

(+) (+) ~ . , ~  
a4  = -- VtZ) lo'v/(n -- M -- 1), n ~> M + 1 (3.5) 

whereas a, (i = 1 . . . . .  3) is given by 

ai (+~ =(+--) ~v/(2) lo~/(M + 1 - n ) ,  n < M +  1 (3.6) 

whereby n = 0, 1, 2 . . . .  and M = 0, 1, 2 . . . .  (M depends on three 
quantum numbers m, I, m' of the harmonic oscillator). It is necessary to 
note that the three a, have to be always equal al = a2 = a3 or a~ = a~ = a~. 
The group SU(3) obviously plays an important role in a non-local quantum 
field theory, as long as we consider the De Sitter space as a sufficient 
foundation for a quantization. Because a4 is connected with the total 
energy (or mass), the remaining a, must also represent a mass, but this mass 
differs from the total mass of an elementary particle, and we may suppose 
that a, has something to do with the structure. As we have solved (see 
Ulmer, 1973, equation (2.9)), concerning a De Sitter space, with creation 
and annihilation operators for each/~, we may write x(/z)~ in the following 
way: 

1 
x(p)~ = lo(b% + b~,~) . - ~  , [b%, b,,, ~,] = 6 , , .  6 w  (3.7) 

(The index/z indicates the spinor component.) 
Considerations up to now did not take account of concrete problems of 

modern high energy physics. Many of the present theories represent 
phenomenological extensions of the usual relativistic (and non-relativistic) 
quantum theory, for example equation (1.4). In the last few years, the 
application of group theory in the quark model has demonstrated many 
proceedings, and a symmetric, non-relativistic harmonic-oscillator quark 
theory has been considered for studying resonance phenomenas in high 



Q U A N T I Z E D  DE SITTER S P A C E - - I I  207 

energy physics. Feynman (1970) succeeded in extending these models to a 
relativistic quark model, With the help of some simplifications in equations 
(2.9) or (3.2), we can find a very close connection to this relativistic quark 
model. For this reason we shall give a short report on Feynman's  theory 
as far as the theory concerns the foundations of  baryon dynamics. The 
application for the calculation of current matrix elements does not matter 
here. The non-relativistic harmonic oscillator is given by 

m 2 
E = �89 .p2 § 2- Oo X 2 

Multiplying by 2m and setting m2(Oo 2= Q2= constant, we shall get 
2 m E  = p 2 +  f azx  2. By adding a constant m z to the left-hand side, we 
obtain the squares of  relativistic energies (me+  E) 2 if we neglect E z 
( E 2 ~  mZe4). Now a quark-operator for three interacting quarks can be 
considered: 

( ~ 2 1 ) 
K =  3 J,~=IP~ + 108 (2Z[(ui - uy)2] + 0 (3.8) 

~is  a constant, p 2  represents the square of  the four-vector of the momentum 
operator of  quark i (i = 1 . . . . .  3): Pi z = P u P i t  - PixPi:, - PiyPiy -- PizPi~, 
where P~u can be replaced by iO/Ou~, and u~, is the conjugate position. The 
propagator  for baryons is given by K -1. K is separable, and the external 
momentum P = P,  + P2 + Pa can be separated f rom external motion. By 
means of some substitutions of  (3.8) we obtain: 

1 
e~ = �89 - �89 P2 = �89 + {{ - ~ r/ 

1 
P 3  - -  l p  • • - - 3 = ,  6~+  t/ 

u, = R -- 2x, u2 = R + x - ~/(3)y (3.9) 

ua = R + x + ~/(3)y 
K = p2 _ 37/2 

hereby 

- -  - - 7 , ,  a + / ) +  

where 21~ r2 was called by Feynman the mass square operator. The propagator  
between perturbances K -1 now becomes: 

1 1 
= E/ , , (e ,  (3.1o) -E= p 2  

I 

where (3.10) is written in terms of Gaussian eigenfunctions h({ ,~)of  the 
harmonic oscillator and h({,~l) is the adjoint to h. The matrix-dement of a 
small perturbation aK is given by 

N, ,  = (f*,t,SK]h,) (3.11) 
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and further calculations of current matrix elements were done using 
creation and annihilation operators, for example: 

x = -i(212)-~/2(bx+ + bx) 

y = -i(2f2)-~/2(by+ + b~), [bu, bu, +] = 6,~ (3.12) 

It  should be noted here that the author (Feynman, et al., 1971) computed 
all matrix-elements N~j with an additional simplification, because he used 
only space-like excited states and neglected the time variable. A comparison 
with the formalism in this and in the previous paper shows a very close 
connection to the relativistic phenomenological theory of Feynman. We 
wish to state here some juxtapositions: 

curvature ai + at ~ ~rlz (supposition: E < mc z) 

equation (3.7) -~ equation (3.12) 

p2 _ 3~r2 =~ equations (2.9) or (3.2) 

Finally, some remarks on a non-local quantum field theory and the 
application to Feynman's  relativistic quark model seem to be justified here. 
This close connection exists, if a De Sitter metric 

_ 8 r  = x 2 + y2 q_ Z2 _ C 2 1 2  _ au+.au 

is considered. In two relevant cases this may be a specification: Very strong 
interactions between the particles involve a mutual influence of  the curva- 
tures. This fact has already been mentioned in the previous paper (Section 3, 
Electromagnetic Interactions), and Feynman therefore introduced a 
perturbed K '  (K'  = K -  6K). In general relativity, a metric tensor of the 
form 

gu~ dxu dxv (3.13) 

is used, whereby the restriction gVU = gv, = 6~ is not necessary. But if we 
assume only an insignificant dependence of gV~(x ,x , )  in the space and 
time variables, a treatment o fg  TM as a perturbation of a space with De Sitter 
metric (2.7) seems to be useful and justified. This report on a relativistic 
quark model, discussed by Feynman, may show that the problems of a 
non-local relativistic quantum field theory, based on a De Sitter space, and 
the connection to the Pauli principle, which we considered in this and in a 
previous paper, may be worth investigating, not only for the reason of 
better understanding of some aspects of the Pauli principle. 
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